References

- Corey, E. J., Bakshi, R. K. & Shibata, S. (1987). J. Am. Chem. Soc. 109, 5551–5553.
- Corey, E. J., Cho, H., Rucker, C. & Hua, D. H. (1981). Tetrahedron Lett. 22, 3455–3458.
- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 72–98. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Heaton, S. B. & Jones, G. B. (1992). Tetrahedron Lett. 33, 1693-1696.
- Martens, J., Dauelsberg, C., Behnen, W. & Wallbaum, S. (1992). Tetrahedron Asymmetry, 3, 347-349.
- Sheldrick, G. M. (1985). SHELXTL User's Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Still, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923–2925.

Acta Cryst. (1993). C49, 1753-1756

Tetraphenylphosphonium Salts of 2-Telluro-5-methylthiophene and its Mercury(II) Metal Complex

JIN ZHAO, JOSEPH W. KOLIS AND WILLIAM T. PENNINGTON

Department of Chemistry, Clemson University, Clemson, South Carolina 29634-1905, USA

(Received 26 June 1992; accepted 3 March 1993)

Abstract

Structures of the tetraphenylphosphonium salts of 2-telluro-5-methylthiophene and its mercury(II) metal complex, 2-tris(5-methyl-2-thienyltelluro)mercury(II) have been determined. Both compounds have ionic structures, with no close contacts between ions. The metal complex consists of three 2-telluro-5-methylthiophene ligands bound through the tellurium atoms in a trigonal-planar arrangement about the mercury(II) metal center. Addition of the methyl substituent to the thiophene ring avoids the rotational disorder which can occur upon complexation of the parent ion, 2-tellurothiophene.

Comment

The complexation chemistry of organothiolate ligands has received considerable attention (Blower & Dilworth, 1987), in part because of their rich structural diversity (Lee, Craig, Ma, Scudder, Bailey & Dance, 1988; Pulla Rao, Dorfman & Holm, 1986; Christou, Hagen & Holm, 1982; Money, Huffman & Christou, 1988). The chemistry of organoselenium and organotellurium compounds, on the other hand, is much less developed (Gysling, 1986). The anion, 2-tellurothiophene, one of the few stable organotellurides (Engman & Cava, 1982), has been used to prepare one of only two known homoleptic metal organotelluride complexes, a tetrameric silver cluster, $Ag_4(TeC_4H_3S)_6^{2-}$ (Zhao, Adcock, Pennington & Kolis, 1990). We were interested in expanding the coordination chemistry of this ion; however, to avoid the formation of disordered complexes as a result of rotation of the thiophene ring about the C-Te bond, as was observed in the silver complex, we have modified the ligand by addition of a methyl substituent at the 5 position.

A solution (2.0 mmol) of the 2-telluro-5-methylthiophene ligand was prepared by dissolving methylthiophene (0.20 ml) in THF (10 ml) at 195 K, followed by addition of *n*-butyllithium (1.6 ml,3.6 mmol). The solution was allowed to return to room temperature, at which time powdered elemental Te (2.0 mmol) was added. Tetraphenylphosphonium 2-telluro-5-methylthiophene (I) was formed by addition of a stoichiometric amount of tetraphenylphosphonium bromide to the above mixture; the resulting yellow solution was filtered, lay-

ered with diethyl ether and stored at 277 K overnight to generate yellow crystals in good yield. The metal complex, tris(2-telluro-5-methylthiophene)mercury-(II) was formed by addition of $HgCl_2$ (0.5 mmol) in CH₃CN (10 ml) to a solution of (I) as described above, followed by filtration and layering with diethyl ether to form red crystals of the tetraphenylphosphonium salt (II).

Acta Crystallographica Section C ISSN 0108-2701 © 1993

Compound (I) crystallizes as well separated ions, with no solvent molecules or interactions to stabilize the anion. The anion (Fig. 1*a*) is essentially planar [mean deviation of 0.03 (2) Å] with only minor differences in distances and angles as compared to those of the unsubstituted parent ion (Zhao, Adcock, Pennington & Kolis, 1990).

The structure of the metal complex of (II) is very similar to that observed in tris(tellurophenolato)mercurate(II) which also has been structurally characterized as the tetraphenylphosphonium salt (Behrens, Hoffman & Klar, 1977). The three telluro-methyl-thiophene ligands are bound to the metal through the tellurium atoms in a trigonalplanar arrangement with the ligands in a propellerlike configuration (Fig. 1b). No disorder of the functionalized rings was observed. The dihedral angles between thiophene ring planes and the Te₃ plane are 22.0 [S(1)—C(4)], 53.3 [S(2)—C(9)] and 83.5° [S(3)— C(14)] versus values of 11.2, 34.6 and 71.2° for the

SIT

ſetti cm C(4) 23 (a) Ct15) C(13) C(14) cm2) (CIIID Te(2) Tel?) **@**\ Hgtt) CI63 (5121 C(7) C19) TefN C18 CHU CHO C15) C(4) (b) C(3)

Fig. 1. Views of (a) (1) and (b) (11) showing the labeling of non-H atoms. Thermal ellipsoids are shown at 50% probability levels.

phenyl derivative. The average Hg-Te distance of 2.70 (2) Å is identical for the two compounds as is the average Te-Hg-Te angle (120°), although both compounds exhibit some distortion from an idealized trigonal planar geometry about the metal center. Deviations in the present compound are somewhat larger, with Te-Hg-Te angles in the range 107.8 (1)-130.0 (1)° as opposed to a range of 110.7 (1)–125.2 (1) $^{\circ}$ for the phenyl derivative. This distortion appears to be the result of intramolecular steric interactions between a Te atom of one ligand and the thiophene ring of an adjacent ligand; in particular, repulsion between the S atom [S(1)] of the ring most nearly coplanar with the metal coordination sphere and a Te atom [Te(3)] seems to be a dominant interaction [S(1)-Te(3) = 3.899 (9) Å].The observed conformation may be a result of packing effects, as suggested for the phenyl derivative, but other factors cannot be ruled out.

Experimental

Compound (I)

Crystal data

 $C_{24}H_{20}P^{+}.C_{5}H_{5}STe^{-}$ $M_{r} = 564.17$ Monoclinic $P2_{1}/c$ a = 10.612 (4) Å b = 13.902 (7) Å c = 17.898 (6) Å $\beta = 104.62 (3)^{\circ}$ $V = 2555 (2) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.47 \text{ Mg m}^{-3}$

Data collection Nicolet R3m/V diffractometer $\omega/2\theta$ scans Absorption correction: empirical $T_{min} = 0.54$, $T_{max} = 1.00$ 3734 measured reflections 3344 independent reflections 1858 observed reflections

Refinement

 $[I > 3\sigma(I)]$

Refinement on F Final R = 0.0486 wR = 0.0552 S = 1.531858 reflections 290 parameters $w = 1/[\sigma^2(F)+0.000255F^2]$ Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 35 reflections $\theta = 16-29^{\circ}$ $\mu = 1.32 \text{ mm}^{-1}$ T = 294 KPlate $0.35 \times 0.29 \times 0.11 \text{ mm}$ Pale orange

 $R_{int} = 0.028$ $\theta_{max} = 22.5^{\circ}$ $h = -12 \rightarrow 0$ $k = -15 \rightarrow 0$ $l = -20 \rightarrow 20$ 3 standard reflections monitored every 100 reflections intensity variation: $\pm 2\%$

 $(\Delta/\sigma)_{\text{max}} = 0.01$ $\Delta \rho_{\text{max}} = 0.56 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.78 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from Cromer & Waber (1974)

REGULAR STRUCTURAL PAPERS

Compound (II)		C(41)	0.7030 (11)	0.5145 (7)	0.7824 (5)	0.041 (4)
Constal data		C(42)	0.6243 (12)	0.5083 (7)	0.8346 (5)	0.052 (4)
Crysiai aaia		C(43)	0.6858 (14)	0.5177 (8)	0.9136 (6)	0.062 (5)
[C24H20P][Hg(C5H5STe)3]	Mo $K\alpha$ radiation	C(44)	0.8132 (13)	0.5317 (8)	0.9391 (6)	0.062 (5)
$M_{-} = 1214.25$	$\lambda = 0.71073 \text{ Å}$	C(45)	0.8906 (11)	0.5377 (8)	0.8884 (6)	0.058 (5)
Orthorhombio	Call parameters from 37	C(46)	0.8360 (12)	0.5283 (8)	0.8099 (6)	0.054 (5)
Orthomolic	Cen parameters from 57	Compon	nd (TI)			
$P_{2_12_12_1}$	reflections	Hp(1)	0.7338(1)	0.5727(1)	0.8521(1)	0.062(1)
a = 9.632 (3) A	$\theta = 22 - 30^{\circ}$	Te(1)	0.9325 (3)	0.5393 (1)	0.9250(1)	0.069(1)
<i>b</i> = 17.067 (4) Å	$\mu = 6.04 \text{ mm}^{-1}$	Te(2)	0.7734 (3)	0.7223 (1)	0.8189(1)	0.077 (1)
c = 25.040 (5) Å	T = 294 K	Te(3)	0.5250 (3)	0.4841 (1)	0.8157(1)	0.079 (1)
$V = A116(2) Å^{3}$	Parallelenined	S(1)	0.7727 (12)	0.3666 (5)	0.9092 (3)	0.078 (4)
V = 4110(2) A	$0.20 \times 0.25 \times 0.10 \text{ mm}$	S(2)	0.8447 (11)	0.7931 (5)	0.9384 (4)	0.080 (4)
Z = 4	0.30 × 0.23 × 0.19 mm	S(3)	0.3748 (12)	0.6579 (6)	0.7957 (4)	0.093 (4)
$D_{\rm x}$ = 1.96 Mg m ⁻³	Red	P(1)	0.1120 (9)	0.0358 (5)	0.8721 (3)	0.053 (3)
		C(1)	0.8711 (36)	0.4273 (19)	0.9477 (13)	0.073 (9)
Data collection		C(2)	0.9041 (35)	0.3857 (17)	0.9962 (12)	0.063 (9)
Nicolat P2m/I/ differentema	$A = 22.5^{\circ}$	C(3)	0.8567 (45)	0.3127 (22)	1.0001 (15)	0.099 (13)
Nicolet KSmj v unitacionie-	$\theta_{\rm max} = 22.3$	C(4)	0.7/98 (43)	0.2878 (20)	0.9564 (13)	0.083 (11)
ter	$h = 0 \rightarrow 11$		0.7037 (48)	0.2139 (24)	0.9449 (15)	0.112 (14)
$\omega/2\theta$ scans	$k = 0 \rightarrow 19$	(0) (7)	0.9071 (34)	0.7302 (18)	0.8823 (12)	0.063 (9)
Absorption correction:	$l = 0 \rightarrow 27$	(1) (1)	1.0380 (41)	0.7596 (21)	0.8630(13)	0.080(11)
empirical	3 standard reflections		1.0970 (40)	0.7360 (23)	0.9300 (10)	0.101 (13)
$T_{1} = 0.62$ T = 1.00	monitored every 100	CUD	1.0075 (43)	0.8344 (22)	10285(15)	0.008 (13)
$T_{\rm min} = 0.02, T_{\rm max} = 1.00$	momored every 100	Cub	0 4319 (38)	0 5705 (21)	0 7695 (13)	0.078 (10)
3054 measured reflections	rellections	C(12)	0.3780 (34)	0.5633 (18)	0.7181 (12)	0.065 (9)
3054 independent reflections	intensity variation: $\pm 1\%$	C(13)	0.3132 (37)	0.6306 (20)	0.6959 (13)	0.082 (11)
1858 observed reflections		C(14)	0.2941 (47)	0.6864 (23)	0.7365 (15)	0.104 (13)
$[l > 3\sigma(l)]$		cis	0.2268 (47)	0.7697 (20)	0.7325 (13)	0.092 (11)
[1 > 50(1)]		C(16)	0.1830 (31)	0.1369 (17)	0.8653 (12)	0.056 (8)
Definionent		C(17)	0.3127 (37)	0.1444 (20)	0.8452 (14)	0.077 (11)
кејшетеш		C(18)	0.3582 (38)	0.2251 (20)	0.8374 (12)	0.075 (10)
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.06$	C(19)	0.2747 (35)	0.2865 (17)	0.8527 (12)	0.066 (8)
Final $R = 0.0530$		C(20)	0.1425 (36)	0.2753 (18)	0.8791 (12)	0.070 (10)
$m_{\rm H} = 0.0566$	$\Delta \rho_{\rm max} = 1.56 \ {\rm e} \ {\rm A}^{-3}$	C(21)	0.0893 (36)	0.1935 (18)	0.8844 (13)	0.068 (9)
WA - 0.0300	$\Delta a_{\rm min} = -0.81 \mathrm{e}\mathrm{\AA}^{-3}$	C(22)	-0.0139 (30)	0.0323 (16)	0.9276 (11)	0.051 (8)
S = 1.27	$\Delta p_{\rm min} = -0.61 \ C \ A$	C(23)	-0.1399 (34)	-0.0017 (17)	0.9198 (12)	0.064 (9)
1858 reflections	Atomic scattering factors	C(24) C(25)	-0.2302 (43)	-0.0019(19)	0.9638 (12)	0.077 (9)
229 parameters	from Cromer & Waber	$C(\Delta)$	-0.18/1 (30)	0.0230(19) 0.0584(10)	1.0130(13)	0.076 (10)
$w = 1/(\sigma^2(F) + 0.0005F^2)$	(1974)	C(20) C(27)	0.0391 (38)	0.0584 (19)	0 9797 (13)	0.075 (10)
	(1)))	C(28)	0 2544 (32)	-0.0332 (14)	0.8808 (10)	0.048 (7)
		C(29)	0.3114 (35)	-0.0580(19)	0.8326 (12)	0.075 (11)
Table 1. Fractional atomic coordinates and equivalent		C(30)	0.4324 (39)	-0.1106 (19)	0.8380 (13)	0.078 (10)
isotropic thermal parameters $(Å^2)$		C(31)	0.4684 (37)	-0.1412 (19)	0.8852 (14)	0.077 (10)
isotropic thermal parameters (A ²)		C(32)	0.4057 (39)	-0.1160 (20)	0.9330 (14)	0.082 (11)
$H_{} = \frac{1}{2} \sum_{i} \sum_{j} H_{ij} \sigma^* \sigma^* \sigma_{ij} \sigma_{ij}$		C(33)	0.2958 (32)	-0.0613 (17)	0.9320 (12)	0.065 (9)
$U_{eq} = \frac{1}{3} \Delta_i \Delta_j$	jujujujajan.aj.	C(34)	0.0292 (28)	0.0142 (14)	0.8102 (10)	0.043 (7)
x y	z U _{eq}	C(35)	0.0121 (30)	0.0692 (17)	0.7713 (11)	0.052 (8)

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	-	-			C(32)
	Um	$=\frac{1}{2}\sum_{i}\sum_{i}U_{ii}a^{*}a$	*a:.a:.		C(33)
	્ય	3-1-1-1-1-1-1	·····		C(34)
~	x	у	z	Ueq	C(35)
Compou	nd (1)				C(36)
Te(1)	0.7290 (1)	0.0831 (1)	0.6349 (1)	0.066 (1)	C(37)
S(1)	0.9517 (3)	0.1697 (2)	0.7851 (2)	0.066 (1)	C(38)
P(1)	0.6283 (3)	0.5099 (2)	0.6806(1)	0.041 (1)	C(39)
C(1)	0.7898 (12)	0.1606 (7)	0.7408 (6)	0.056 (5)	
C(2)	0.7176 (14)	0.2102 (8)	0.7817 (7)	0.064 (5)	
C(3)	0.8037 (18)	0.2575 (8)	0.8475 (7)	0.073 (7)	
C(4)	0.9254 (16)	0.2429 (9)	0.8581 (7)	0.072 (7)	
C(5)	1.0384 (15)	0.2853 (10)	0.9188 (7)	0.091 (7)	
C(11)	0.4875 (10)	0.4349 (7)	0.6600 (5)	0.041 (4)	
C(12)	0.4920 (12)	0.3432 (8)	0.6306 (5)	0.053 (5)	
C(13)	0.3808 (15)	0.2852 (9)	0.6159 (6)	0.066 (6)	
C(14)	0.2692 (14)	0.3175 (9)	0.6323 (6)	0.067 (6)	
C(15)	0.2624 (12)	0.4087 (9)	0.6628 (6)	0.059 (5)	
C(16)	0.3751 (12)	0.4661 (8)	0.6768 (5)	0.049 (4)	
C(21)	0.5842 (10)	0.6287 (7)	0.6453 (5)	0.041 (4)	
C(22)	0.4787 (11)	0.6431 (7)	0.5816(5)	0.051 (4)	
C(23)	0.4563 (13)	0.7362 (9)	0.5496 (6)	0.065 (5)	
C(24)	0.5374 (15)	0.8100 (9)	0.5821 (7)	0.071 (6)	
C(25)	0.6363 (15)	0.7967 (7)	0.6455 (7)	0.075 (6)	
C(26)	0.6618 (12)	0.7061 (8)	0.6775 (6)	0.057 (5)	
C(31)	0.7443 (11)	0.4650 (7)	0.6314 (6)	0.043 (3)	
C(32)	0.8159 (12)	0.3822 (8)	0.6567 (7)	0.058 (5)	
C(33)	0.8935 (13)	0.3426 (8)	0.6152 (7)	0.069 (6)	
C(34)	0.9066 (13)	0.3888 (10)	0.5482 (7)	0.069 (6)	
C(35)	0.8388 (12)	0.4722 (10)	0.5241 (6)	0.064 (5)	
C(36)	0.7602 (11)	0.5109 (8)	0.5646 (5)	0.050 (4)	

Table 2. Geometric parameters (Å, °)

0.0456 (17) -0.0341 (20)

-0.0858 (19) -0.0678 (18)

--0.0606 (34) --0.0982 (38)

-0.0833 (37) -0.0162 (33)

0.7234 (12) 0.7146 (13)

0.7565 (13) 0.8035 (12)

0.064 (9) 0.078 (10)

0.074 (10) 0.069 (9)

	(1)	(II)
Hg(1)—Tc(1)		2,706 (3)
Hg(1)-Te(2)		2.712 (3)
Hg(1)-Te(3)		2.677 (3)
Te(1)-C(1)	2.13 (1)	2.08 (3)
Te(2)-C(5)		2.10 (3)
Te(3)C(11)		2.08 (4)
S(I)—C(I)	1.71 (1)	1.70 (3)
S(1)-C(4)	1.73 (1)	1.79 (4)
S(2)-C(6)		1.70 (3)
S(2)-C(9)		1.80 (4)
S(3)-C(11)		1.72 (4)
S(3)-C(14)		1.74 (4)
C(1)-C(2)	1.37 (2)	1.44 (4)
C(2)-C(3)	1.45 (2)	1.33 (5)
C(3)-C(4)	1.27 (2)	1.39 (5)
C(4)-C(5)	1.52 (2)	1.49 (6)
C(6)-C(7)		1.48 (5)
C(7)-C(8)		1.43 (5)
C(8)-C(9)		1.39 (6)
C(9)-C(10)		1.56 (5)
C(11)-C(12)		1.39 (4)

C(12)-C(13)		1.42 (5)
C(13)-C(14)		1.40 (5)
Cri4)-Cris		1.57 (5)
P-C	1.79 (1)	1.83 (4)
C—C	1.38 (2)	1.42 (5)
		(/
Te(1)-Hg(1)-Te(2)		107.8 (1)
Te(1)-Hg(1)-Te(3)		130.0 (1)
Te(2)-Hg(1)-Te(3)		122.2 (1)
Hg(1) - Te(1) - C(1)		100.2 (9)
Hg(1) - Te(2) - C(6)		93.9 (9)
Hg(1)-Te(3)-C(11)		96 (1)
C(1) - S(1) - C(4)	93.4 (7)	94 (2)
C(6)-S(2)-C(9)		95 (2)
C(11)-S(3)-C(14)		93 (2)
Te(1) - C(1) - S(1)	119.6 (7)	124 (2)
Te(1) - C(1) - C(2)	130.0 (9)	128 (2)
S(1)-C(1)-C(2)	110.3 (8)	108 (2)
C(1) - C(2) - C(3)	110 (1)	116 (3)
C(2)-C(3)-C(4)	117 (1)	114 (3)
S(1)-C(4)-C(3)	109 (1)	108 (3)
S(1)-C(4)-C(5)		119 (3)
C(3)-C(4)-C(5)		132 (3)
Te(2)-C(6)-S(2)		120 (2)
Te(2)-C(6)-C(7)		125 (2)
S(2)-C(6)-C(7)		114 (2)
C(6)C(7)C(8)		103 (3)
C(7)C(8)-C(9)	124 (4)	
S(2)-C(9)-C(8)	103 (3)	
S(2)-C(9)-C(10)		117 (3)
C(8)-C(9)-C(10)		140 (4)
Te(3)-C(11)-S(3)		123 (2)
Te(3)-C(11)-C(12)		128 (2)
S(3)-C(11)-C(12)		108 (2)
C(11)-C(12)-C(13)		117 (3)
C(12)-C(13)-C(14)		109 (3)
S(3)-C(14)-C(13)		112 (3)
S(3)-C(14)-C(15)		120 (3)
C(13)-C(14)-C(15)		128 (3)
CPC	109 (1)	109 (2)
Р—С—С	120.2 (9)	117 (4)
C-C-C	120 (1)	120 (4)

Structure solution: direct methods. Structure refinement: fullmatrix least-squares on F. As (II) crystallizes in a chiral space group, refinement was carried out for both enantiomeric conformations; the reported coordinates correspond to the model which gave lower residuals (residuals for the incorrect model are: R = 0.0768, wR = 0.0840, S = 1.89). The refinement of (I) included positional and anisotropic thermal parameters for all non-H atoms; H atoms other than those of the methyl C atom (which were not located) were included in idealized positions with a group isotropic thermal parameter [$U_{iso} = 0.072$ (8) Å²]. The refinement of (II) included positional parameters and anisotropic thermal parameters for the non-H atoms other than C, which were refined isotropically; H atoms were not included. Computer programs: SHELXTL (Sheldrick, 1985). Corrections: Lorentz and polarization, real and imaginary anomalous dispersion (Cromer, 1974).

We are grateful to the National Science Foundation (CHE-9102548) for support of this work.

References

Behrens, U., Hoffman, G. & Klar, G. (1977). Chem. Ber. 110, 3672–3677.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Blower, P. G. & Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121-185.
- Christou, G., Hagen, K. & Holm, R. H. (1982). J. Am. Chem. Soc. 104, 1744-1745.
- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Engman, L. & Cava, M. P. (1982). Organometallics, 1, 470-473.
- Gysling, H. J. (1986). The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 1, edited by S. Patai & Z. Rappoport, pp. 679–855. New York: John Wiley.
- Lee, G. S. H., Craig, D. C., Ma, I., Scudder, M. L., Bailey, T. D. & Dance, I. G. (1988). J. Am. Chem. Soc. 110, 4863-4864.
- Money, J. K., Huffman, J. C. & Christou, G. (1988). Inorg. Chem. 27, 507-514.
- Pulla Rao, C., Dorfman, J. R. & Holm, R. H. (1986). Inorg. Chem. 25, 428–439.

Sheldrick, G. M. (1985). SHELXTL User's Manual. Revision 5.1. Nicolet Instruments Corporation, Madison, Wisconsin, USA.

Zhao, J., Adcock, D., Pennington, W. T. & Kolis, J. W. (1990). Inorg. Chem. 29, 4358-4360.

Acta Cryst. (1993). C49, 1756-1761

Structures of Bis(di-2-pyridylamine)dinitratocopper(II) and Bis(acetato)bis(di-2pyridylamine)copper(II) Monohydrate

M. CARMEN MUÑOZ*

Departamento de Física Aplicada, Universidad Politécnica de València, Camino de Vera s/n, 46071-València, Spain

JOSÉ MIGUEL LÁZARO, JUAN FAUS AND MIGUEL JULVE

Departament de Química Inorgànica, Facultat de Química de la Universitat de València, Dr. Moliner 50, 46100-Burjassot, València, Spain

(Received 13 November 1992; accepted 18 March 1993)

Abstract

Both complexes consist of neutral mononuclear units, the copper(II) environment being distorted 4+2 octahedral for (I) and distorted square pyramidal for (II). Compound (I) is centrosymmetric. Its equatorial plane comprises the four N atoms of two di-2-pyridylamine (dpyam) ligands with the axial positions filled by two O atoms of two unidentate nitrate anions. The equatorial plane in (II) is composed of the two N atoms of dpyam and two O atoms of two acetate groups, with the apical position occupied by another O atom of one of the acetate

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71113 (32 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1024]